Package: SurrogateRsq 0.2.1.9000

SurrogateRsq: Goodness-of-Fit Analysis for Categorical Data using the Surrogate R-Squared

To assess and compare the models' goodness of fit, R-squared is one of the most popular measures. For categorical data analysis, however, no universally adopted R-squared measure can resemble the ordinary least square (OLS) R-squared for linear models with continuous data. This package implement the surrogate R-squared measure for categorical data analysis, which is proposed in the study of Dungang Liu, Xiaorui Zhu, Brandon Greenwell, and Zewei Lin (2022) <doi:10.1111/bmsp.12289>. It can generate a point or interval measure of the surrogate R-squared. It can also provide a ranking measure of the percentage contribution of each variable to the overall surrogate R-squared. This ranking assessment allows one to check the importance of each variable in terms of their explained variance. This package can be jointly used with other existing R packages for variable selection and model diagnostics in the model-building process.

Authors:Xiaorui Zhu [aut, cre, cph], Zewei Lin [aut, ctb], Dungang Liu [aut, ctb], Brandon Greenwell [ctb]

SurrogateRsq_0.2.1.9000.tar.gz


SurrogateRsq_0.2.1.9000.tar.gz(r-4.4-noble)
SurrogateRsq_0.2.1.9000.tgz(r-4.4-emscripten)SurrogateRsq_0.2.1.9000.tgz(r-4.3-emscripten)
SurrogateRsq.pdf |SurrogateRsq.html
SurrogateRsq/json (API)
NEWS

# Install 'SurrogateRsq' in R:
install.packages('SurrogateRsq', repos = c('https://xiaoruizhu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/xiaoruizhu/surrogatersq/issues

Datasets:
  • RedWine - Red wine quality dataset of the Portuguese "Vinho Verde" wine
  • WhiteWine - White wine quality dataset of the Portuguese "Vinho Verde" wine

On CRAN:

categorical-data-analysisgoodness-of-fitr-squared-statisticstatistics

4.92 score 5 stars 11 scripts 179 downloads 3 exports 100 dependencies

Last updated 8 months agofrom:1e78baf5aa. Checks:OK: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024

Exports:surr_rsqsurr_rsq_cisurr_rsq_rank

Dependencies:ADGofTestaskpassbase64encbslibcachemclicodetoolscolorspacecopBasiccopulacpp11crayoncrosstalkcurldata.tabledigestdplyrevaluatefansifarverfastmapfontawesomeforcatsforeachfsgenericsGGallyggplot2ggstatsgluegoftestgridExtragslgtablehighrhmshtmltoolshtmlwidgetshttrisobanditeratorsjquerylibjsonliteknitrlabelinglaterlatticelazyevallifecyclelmomcoLmomentsmagrittrMASSMatrixmemoisemgcvmimemunsellmvtnormnlmenumDerivopensslPAssopatchworkpcaPPpillarpkgconfigplotlyplyrprettyunitsprogresspromisespsplinepurrrR6randtoolboxrappdirsRColorBrewerRcppRcppArmadillorlangrmarkdownrngWELLsassscalesstablediststringistringrsystibbletidyrtidyselecttinytexutf8vctrsVGAMviridisLitewithrxfunyaml

A introduction to categorical data goodness-of-fit analysis using the SurrogateRsq package

Rendered fromJSSpaper.pdf.asisusingR.rsp::asison Nov 14 2024.

Last update: 2023-04-12
Started: 2023-02-14