Package: SPSP 0.2.0.9000
SPSP: Selection by Partitioning the Solution Paths
An implementation of the feature Selection procedure by Partitioning the entire Solution Paths (namely SPSP) to identify the relevant features rather than using a single tuning parameter. By utilizing the entire solution paths, this procedure can obtain better selection accuracy than the commonly used approach of selecting only one tuning parameter based on existing criteria, cross-validation (CV), generalized CV, AIC, BIC, and extended BIC (Liu, Y., & Wang, P. (2018) <doi:10.1214/18-EJS1434>). It is more stable and accurate (low false positive and false negative rates) than other variable selection approaches. In addition, it can be flexibly coupled with the solution paths of Lasso, adaptive Lasso, ridge regression, and other penalized estimators.
Authors:
SPSP_0.2.0.9000.tar.gz
SPSP_0.2.0.9000.zip(r-4.5)SPSP_0.2.0.9000.zip(r-4.4)SPSP_0.2.0.9000.zip(r-4.3)
SPSP_0.2.0.9000.tgz(r-4.4-x86_64)SPSP_0.2.0.9000.tgz(r-4.4-arm64)SPSP_0.2.0.9000.tgz(r-4.3-x86_64)SPSP_0.2.0.9000.tgz(r-4.3-arm64)
SPSP_0.2.0.9000.tar.gz(r-4.5-noble)SPSP_0.2.0.9000.tar.gz(r-4.4-noble)
SPSP_0.2.0.9000.tgz(r-4.4-emscripten)SPSP_0.2.0.9000.tgz(r-4.3-emscripten)
SPSP.pdf |SPSP.html✨
SPSP/json (API)
NEWS
# Install 'SPSP' in R: |
install.packages('SPSP', repos = c('https://xiaoruizhu.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/xiaoruizhu/spsp/issues
- HighDim - A high dimensional dataset with n equals to 200 and p equals to 500.
feature-selectionstatisticsvariable-selection
Last updated 12 months agofrom:c4b4778bb3. Checks:OK: 1 ERROR: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 07 2024 |
R-4.5-win-x86_64 | ERROR | Nov 07 2024 |
R-4.5-linux-x86_64 | ERROR | Nov 07 2024 |
R-4.4-win-x86_64 | ERROR | Nov 07 2024 |
R-4.4-mac-x86_64 | ERROR | Nov 07 2024 |
R-4.4-mac-aarch64 | ERROR | Nov 07 2024 |
R-4.3-win-x86_64 | ERROR | Nov 07 2024 |
R-4.3-mac-x86_64 | ERROR | Nov 07 2024 |
R-4.3-mac-aarch64 | ERROR | Nov 07 2024 |
Exports:adalasso.glmnetadalassoCV.glmnetadalassoCVmin.glmnetlasso.glmnetlasso.larslassoCV.glmnetMCP.ncvregridge.glmnetSCAD.ncvregSPSPSPSP_step
Dependencies:codetoolsforeachglmnetiteratorslarslatticeMatrixncvregRcppRcppEigenshapesurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Selection by Partitioning the Solution Paths | SPSP-package |
Nine Fitting-Functions that can be used as an input of 'fitfun.SP' argument to obtain the solution paths for the SPSP algorithm. | adalasso.glmnet adalassoCV.glmnet adalassoCVmin.glmnet Fitting-Functions lasso.glmnet lasso.lars lassoCV.glmnet MCP.ncvreg ridge.glmnet SCAD.ncvreg |
A high dimensional dataset with n equals to 200 and p equals to 500. | HighDim |
Selection by partitioning the solution paths of Lasso, Adaptive Lasso, and Ridge penalized regression. | SPSP |
The selection step with the input of the solution paths. | SPSP_step |