Package: SPSP 0.2.0.9000

SPSP: Selection by Partitioning the Solution Paths

An implementation of the feature Selection procedure by Partitioning the entire Solution Paths (namely SPSP) to identify the relevant features rather than using a single tuning parameter. By utilizing the entire solution paths, this procedure can obtain better selection accuracy than the commonly used approach of selecting only one tuning parameter based on existing criteria, cross-validation (CV), generalized CV, AIC, BIC, and extended BIC (Liu, Y., & Wang, P. (2018) <doi:10.1214/18-EJS1434>). It is more stable and accurate (low false positive and false negative rates) than other variable selection approaches. In addition, it can be flexibly coupled with the solution paths of Lasso, adaptive Lasso, ridge regression, and other penalized estimators.

Authors:Xiaorui Zhu [aut, cre], Yang Liu [aut], Peng Wang [aut]

SPSP_0.2.0.9000.tar.gz
SPSP_0.2.0.9000.zip(r-4.5)SPSP_0.2.0.9000.zip(r-4.4)SPSP_0.2.0.9000.zip(r-4.3)
SPSP_0.2.0.9000.tgz(r-4.4-x86_64)SPSP_0.2.0.9000.tgz(r-4.4-arm64)SPSP_0.2.0.9000.tgz(r-4.3-x86_64)SPSP_0.2.0.9000.tgz(r-4.3-arm64)
SPSP_0.2.0.9000.tar.gz(r-4.5-noble)SPSP_0.2.0.9000.tar.gz(r-4.4-noble)
SPSP_0.2.0.9000.tgz(r-4.4-emscripten)SPSP_0.2.0.9000.tgz(r-4.3-emscripten)
SPSP.pdf |SPSP.html
SPSP/json (API)
NEWS

# Install 'SPSP' in R:
install.packages('SPSP', repos = c('https://xiaoruizhu.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/xiaoruizhu/spsp/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:
  • HighDim - A high dimensional dataset with n equals to 200 and p equals to 500.

On CRAN:

feature-selectionstatisticsvariable-selection

3.90 score 1 stars 2 scripts 166 downloads 8 mentions 11 exports 12 dependencies

Last updated 12 months agofrom:c4b4778bb3. Checks:OK: 1 ERROR: 8. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-win-x86_64ERRORNov 07 2024
R-4.5-linux-x86_64ERRORNov 07 2024
R-4.4-win-x86_64ERRORNov 07 2024
R-4.4-mac-x86_64ERRORNov 07 2024
R-4.4-mac-aarch64ERRORNov 07 2024
R-4.3-win-x86_64ERRORNov 07 2024
R-4.3-mac-x86_64ERRORNov 07 2024
R-4.3-mac-aarch64ERRORNov 07 2024

Exports:adalasso.glmnetadalassoCV.glmnetadalassoCVmin.glmnetlasso.glmnetlasso.larslassoCV.glmnetMCP.ncvregridge.glmnetSCAD.ncvregSPSPSPSP_step

Dependencies:codetoolsforeachglmnetiteratorslarslatticeMatrixncvregRcppRcppEigenshapesurvival